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Abstract: Two-dimensional (2D) materials have attracted considerable interest thanks to their unique electronic/physical–chem-
ical  characteristics  and their  potential  for  use in  a  large variety  of  sensing applications.  However,  few-layered nanosheets  tend
to  agglomerate  owing  to  van  der  Waals  forces,  which  obstruct  internal  nanoscale  transport  channels,  resulting  in  low  electro-
chemical  activity  and  restricting  their  use  for  sensing  purposes.  Here,  a  hybrid  MXene/rGO  aerogel  with  a  three-dimensional
(3D) interlocked network was fabricated via a freeze-drying method. The porous MXene/rGO aerogel has a lightweight and hier-
archical  porous  architecture,  which  can  be  compressed  and  expanded  several  times  without  breaking.  Additionally,  a  flexible
pressure sensor that uses the aerogel as the sensitive layer has a wide response range of approximately 0–40 kPa and a consider-
able  response  within  this  range,  averaging  approximately  61.49  kPa–1.  The  excellent  sensing  performance  endows  it  with  a
broad range of applications, including human-computer interfaces and human health monitoring.
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1.  Introduction

In  recent  years,  a  diverse  range  of  applications  in  the
field  of  electronic  sensing has  emerged thanks  to  the unique
properties  of  two-dimensional  materials  (e.g.,  graphene[1],
MXene[2], metal oxides[3], etc.). These applications include pres-
sure  sensors,  image  sensors,  biosensors,  temperature/humid-
ity sensors, and gas sensors[4−6]. In particular, researchers are in-
terested  in  flexible  pressure  sensors  because  of  their  poten-
tial  use  in  wearable  health  monitoring  devices[7−9]， human-
machine  interfaces[10−12],  and  electronic  skins[13−15].  Research
has  shifted  in  recent  years  to  improving  sensor  performance.
Especially,  electron/ion  transport  is  influenced  by  the  intern-
al microstructure of the sensors (e.g., nanopores and nanochan-
nels), which affects the sensor’s ability to detect environment-
al changes[16].  Therefore, it is vital to investigate the inner mi-
crostructure  of  these  materials,  as  well  as  the  internal  trans-
port behavior of the sensors. The study of the inner microstruc-
ture of  these materials  and the internal  transport  behavior  of
sensors is therefore essential.

Graphene  is  a  two-dimensional  carbon  substance  with
exceptional  mechanical,  electrical,  thermal,  and  optical  pro-
perties[17],  and  is  currently  a  research  hotspot.  However,  it
is  prone  to  agglomeration,  which  results  in  the  destruction
of  internal  nanoscale  transport  channels  and  a  reduction  in
electrochemical  activity,  which  limits  its  application  in  bio-
sensing[18]. As a result, it cannot be used in biosensing applica-
tions.  Graphene  exhibits  high  electrochemical  activity  as

well as biocompatibility. In recent years, a new class of 2D met-
al  carbides  and  nitrides,  the  so-called  MXene,  has  attracted
extensive  attention  due  to  their  metallic  conductivity,  excel-
lent  mechanical  properties,  and  large  specific  surface  area.
Aerogel  is  a  porous  material  with  nanostructures  that  con-
tain  a  large  amount  of  air,  which  has  unique  properties  in
mechanics,  acoustics,  thermals,  optics  and  so  on.  This  ultra-
light  and  compressible  aerogel  material  also  has  broad  app-
lication  prospects  in  the  field  of  flexible  sensing  due  to  its
high  porosity,  excellent  compressibility,  and  electrical  con-
ductivity.  The  electrostatic  interactions  between  MXene  ma-
terials,  with  high  electrochemical  activity  and  biocompati-
bility,  and  graphene  result  in  the  creation  of  two-dimension-
al (2D) composites with low self-stacking that have good elec-
trochemical  activity  and  which  are  biocompatible[19, 20].  The
composite  material  has  better  conductivity  and  can  effect-
ively  improve the sensitivity  of  the sensor  as  a  sensitive  layer
of  the  pressure  sensor.  The  stacking  of  layered  materials  can
effectively expand the response range of the sensor. Incorpor-
ating  2D  materials  as  nanohybrids  is  being  extensively  ex-
plored  to  find  their  synergistic  effect  on  sensing  perform-
ance[21, 22].

In  this  paper  we  show  that  freeze-dried  hybrid  MXene-
rGO aerogels  with  porous  three-dimensional  (3D)  interlocked
networks  can  be  used  as  active  layers  to  fabricate  flexible
sensors  that  exhibit  high  sensing  performance.  In  addition,
we demonstrate that the sensitivity of  the flexible sensors in-
creased  with  an  increase  in  the  bending  angle  (0°–90°).
Moreover,  these devices  also possess  an excellent  level  of  re-
producibility  (high  repeatability);  namely,  the  sensitivity,  re-
sponse  time,  and  recovery  time  do  not  significantly  change
after a large number of cycles. These outstanding demonstra-

  
Correspondence to: L L Wang, liliwang@semi.ac.cn; G Z Shen,

gzshen@bit.edu.cn
Received 14 JANUARY 2022; Revised 9 MARCH 2022.

©2022 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2022) 43, 082601

doi: 10.1088/1674-4926/43/8/082601

 

 
 

https://doi.org/10.1088/1674-4926/43/8/082601
mailto:liliwang@semi.ac.cn
mailto:gzshen@bit.edu.cn


tions confirm the excellent performance of this interlocked ma-
terial as a flexible and wearable sensor. 

2.  Methods
 

2.1.  Preparation of interlocked MXene/rGO aerogel

Ti3C2Tx was  synthesized  by  selective  etching  of  Al  atoms
from Ti3AlC2. Briefly, 4.8 g of lithium fluoride (LiF), 45 mL of hy-
drochloric  acid  (HCl)  and  15  mL  of  deionized  (DI)  water  were
mixed  by  stirring.  Then,  3  g  of  Ti3AlC2 was  slowly  added  to
the solution at  35 °C followed by stirring for  48 h.  The as-ob-
tained suspension was washed with deionized water  via  cen-
trifugation  at  3500  rpm  until  pH ≥ 6.  The  above  MXene
nanosheets solution and rGO solution with mass ratio of 1 :  1
are  mixed  together  using  deionized  water.  Subsequently,  as-
obtained mixed solution based on MXene/rGO was poured in-
to  a  tube  and  frozen  for  30  min  with  liquid  nitrogen.  Finally,
the  MXene/rGO  hybrid  were  freeze-dried  in  a  lyophilizer  for
48 h to fabricate 3D, interlocked MXene/rGO aerogels. 

2.2.  Sample characterization

The  architecture  of  interlocked  MXene/rGO  aerogels  was
observed  by  scanning  electron  microscopy  (SEM,  Magellan
400). The dynamic pressure response and mechanical proper-
ties of an interlocked MXene/rGO aerogels-based flexible pres-
sure sensor were tested using high-resolution micromechanic-
al  testing  system  (Instron  E1000).  Other  pressure-sensitive

properties  were  conducted  using  electrochemical  work  sta-
tion (CHI 760E). 

3.  Results and discussion
 

3.1.  Preparation of MXene/rGO aerogel

When  rGO  was  added  to  the  MXene  nanosheet  solution,
an  MXene/rGO  aerogel  with  a  3D  interlocked  structure  was
formed  via  self-assembly  and  subsequent  freeze-drying.
Fig.  1(a)  shows  the  preparation  procedure  of  the  interlocked
MXene/rGO  aerogel.  Briefly,  MXene  nanosheets  were  created
by  etching  a  Ti3AlC2 precursor  with  HCl  and  LiF,  followed  by
solution  drying.  A  physical  mixing  procedure  occurred
between the charged MXene and rGO nanosheets. Upon com-
bining  the  rGO  with  the  MXene  nanosheets,  a  thicker  and
more protective rGO layer was generated on the inner side of
Ti3C2Tx.  After  freeze-drying,  a  3D  interlocked  MXene/rGO  hy-
brid aerogel was obtained.

The  feasibility  of  freeze-drying  for  the  preparation  of  the
MXene/rGO  aerogel  was  investigated  using  scanning  elec-
tron microscopy (SEM).  As shown in Fig.  1(b),  the MXene and
rGO  nanosheets  were  extended  and  interlinked  to  form  a
3D  honeycomb-like  network.  Pores  were  created  by  the
volatilization  of  water  trapped  between  the  MXene  and  rGO
sheets  after  the  aerogel  was  freeze-dried.  According  to  a
high-resolution SEM photograph,  the pore sizes of  these net-
works are in the range of several  micrometers,  which is  simil-
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Fig. 1. (Color online) The characterization of the interlocked MXene/rGO aerogel composite. (a) Schematic illustration of the fabrication proced-
ure of interlocked MXene/rGO aerogel. SEM images of interlocked MXene/rGO aerogel: (b) high magnification and (c) low magnification. (d) Optic-
al image of interlocked MXene/rGO aerogel with lightweight feature placed on the dandelion. (e) Compressive stress-strain curves of the inter-
locked MXene/rGO aerogel at 12% strain under different cycles. (f) Structure change of interlocked MXene/rGO aerogel during the compression
process and (g) the corresponding illustration of current change.
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ar  to  a  honeycomb-like  network  (Fig.  1(c)).  Furthermore,  the
porous  MXene/rGO  aerogel  is  such  a  lightweight  material
that it can easily be held by a dandelion (Fig. 1(d)).

The  elastic  performance  of  the  porous  MXene/rGO  aero-
gel  was  evaluated  by  testing  the  compressive  loading  and
unloading  curves  with  a  maximum  strain  of  12%.  When  this
strain was set, a much higher compressive stress of approxim-
ately  9.2  kPa  could  be  observed.  The  stable  and  constant
stress-strain curves in the 1st, 2nd, and 3rd cycles further con-
firmed the recoverability of the as-prepared MXene/rGO aero-
gel  (Fig.  1(e)).  The  pressure-sensitive  mechanism  of  the
MXene/rGO  aerogels  was  mainly  related  to  the  interlocking
structure  of  the  aerogels  (Fig.  1(f)).  Unlike  planar  films,
MXene/rGO  aerogels  exhibit  interlocking  and  porous  struc-
tures. A porous structure can control the conductivity of aero-
gel  materials.  The  change  in  the  conductive  channel  de-
pends  on  the  applied  external  force.  When  an  external  pres-
sure  is  applied,  a  small  compression  deformation  of  the  por-
ous MXene/rGO aerogel increases its internal conductive chan-
nel,  as  well  as  the  current  (Fig.  1(g)).  During  unloading,  the
aerogel  reverts  to  its  original  shape  and  reduces  the  contact
of the internal conductive channels, resulting in a decrease in
the current (Fig. 1(g)). 

3.2.  Pressure sensing properties

Fig.  2(a)  shows  the  structure  of  an  interlocked  MXene/
rGO  aerogel-based  pressure  sensor.  We  started  by  vacuum
evaporating a  gold  electrode with  a  thickness  of  50  nm onto
a  piece  of  polyethylene  terephthalate  film  using  a vacuum
chamber.  Then,  using  the  previously  developed interlocked
MXene/rGO  aerogel  as  an  intermediary  sensing layer,  we  de-
signed  a  resistive  pressure  sensor  that  measures  the  current
change at both ends of the aerogel under different pressures.
The  sensing  performance  of  the  interlocked  MXene/RGO
aerogel-based  pressure  sensor  was  studied  using  both  static
and  dynamic  mechanical  pressure  tests.  The  current–voltage
curves of the aerogel-based pressure sensor under various stat-
ic  pressures  ranging from 0 to  1.1  kPa are  shown in Fig.  2(b).
The  current  increases  with  an  increase  in  the  external  force,
which indicates that the sensitivity of the pressure sensor un-
der static pressure is stable.

The  corresponding  dynamic  sensitivity  curves  are  shown
in Fig. 2(c).  The sensitivity of our pressure sensor was defined
as S = (ΔI/I0)/ΔP[10, 23−25],  where ΔP denotes the change in the
external  force.  ΔI denotes  the  relative  change  in  the  current
and I0 denotes the initial current. Fig. 2(d) diagrams the sensit-
ivity  of  the  pressure  sensor  under  different  pressure.  In  the
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Fig. 2. (Color online) The sensing performance of the interlocked MXene/rGO aerogel-based pressure sensor. (a) Illustration of flexible pressure
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pressure  range  of  0–40  kPa,  the  sensitivity  of  the  flexible
pressure  sensor  can  reach  61.49  kPa–1,  which  is  much  higher
than that of conventional pressure sensors in the same range
of  values.  When  the  pressure  exceeds  40  kPa,  the  increase  in
sensitivity  began to slow down and approaches saturation at
110  kPa  with  a  sensitivity  close  to  4.22  kPa–1.  According  to
this study, our aerogel pressure sensors outperformed the oth-
er pressure sensors in terms of performance. The porous struc-
ture  of  the material  is  responsible  for  the reported enhanced
pressure sensitivity levels.

We also compared the sensitivity of the flat aerogel pres-
sure sensor and the MXene/rGO aerogel pressure sensor,  and
the results  are shown in the inset  of Fig.  2(d).  As  a  result,  the
sensitivity  of  MXene/rGO  aerogel-based  pressure  sensor  is
higher  than  flat  aerogels-based  pressure  sensor. Fig.  2(e)

shows another key parameter of the flexible device-response/
recovery  time;  that  is,  from  the  current–time  (I–T)  amplifica-
tion  curve  of  the  flexible  device  based  on  the  interlocked
MXene/rGO  aerogel,  the  device  has  a  faster  response  and
recovery time (68 and 40 ms, respectively). These features cor-
respond  to  the  response  and  recovery  time  of  the  human
skin (40–50 ms). Rapid response and recovery (without hyster-
esis)  can  ensure  the  timely  perception  of  external  forces  by
flexible  devices  and  increase  recognition  efficiency.  Further-
more,  we  compare  the  performance  of  the  pressure  sensor
with  the  existing  research  results,  and  the  results  are  shown
in Table  1[24, 26−29].  Our  pressure  sensor  has  great  advantages
in terms of sensitivity, response range, response time and oth-
er performance.

To  further  study  the  mechanical  stability  of  the  inter-

Table 1.   Comparison of pressure sensor performance.

Device Sensitivity
(kPa–1)

Pressure range
(kPa)

τrise
(ms)

Τdecay
(ms) Ref.

MXene/rGO 61.49 0–40 68 40 Our work
MXene/ANFs 6.75 – 320 98 [26]
Carbon nanotubes (CNTs)/graphene/waterborne polyurethane (WPU)/
cellulose nanocrystal (CNC) composite aerogels (CNTs/graphene/WC)

0.25 0.112–10 120 [27]

MXene/reduced graphene oxide (MX/rGO) 22.56 0.115–0.97 243 231 [24]
Graphene/biomass aerogels 13.89 <12 120 840 [28]
Polyimide (PI)/reduced graphene oxide (rGO) aerogel 1.33 <20 60 70 [29]
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locked  MXene/rGO  aerogel-based  pressure  sensor,  we  tested
the  bending  properties  of  the  device  at  various  angles  (Fig.
3(a)).  The  pressure–sensitive  response  of  the  device  in-
creased with the extension of the bending angle. The change
in  sensitivity  under  bending  deformation  was  studied  at  a
bending  angle  of  90°  (Fig.  3(b)).  After  five  cycles,  the  pres-
sure-sensitive  response  of  the  device  was  maintained  at  ap-
proximately 120. The interlocked aerogels exhibited high sens-
itivity  and  good  cycling  stability.  At  a  bending  angle  of  90°,
the pressure-sensitive response was approximately 120 and re-
covered to its initial value when released. Moreover, each cor-
responding cycle shows good response and recovery character-
istics  (Fig.  3(c)). Fig.  3(d)  displays  the  sensor  sensitivity  under
different bending angles (the bending angle started at θ = 0°,
and  the  gradient  increased  to  90°  and  then  returned  to  0°  at
a  rate  of  30°).  This  indicates  the  good  mechanical  stability  of
the flexible sensor, which retained the same level of pressure-
sensitive response throughout the bending angle test. 

3.3.  Health monitoring

Owing to its supercompressibility, elasticity, fatigue resist-
ance,  bendability,  and  ultrahigh  sensitivity,  the  interlocked
MXene/rGO  aerogel-based  flexible  pressure  sensor  offers  a
wide  range  of  applications  in  wearable  sectors.  Based  on  the
research  results,  our  sensors  accurately  identified  a  variety  of
stimuli  across  a  wide  range  of  pressures,  including  finger
joint  motion  and  wrist  pulses.  As  shown  in Fig.  4(a),  the  out-
put current increased with the bending angle of the index fin-
ger,  and  the  amplitude  of  the  output  current  increased  with
the  bending  degree  of  the  index  finger.  Here,  the  index  fin-

ger  has  a  bend  angle  of  60°,  and  the  pressure-sensitive  re-
sponse value is approximately 91. Furthermore, the repeatabil-
ity of the device was demonstrated by bending the index fin-
ger  at  90°  three  times  in  a  row,  while  retaining  a  current  re-
sponse of approximately 170 (Fig. 4(b)).

Blood  pressure  readings  collected  from  the  wrist  could
provide vital and useful information about an individual's phys-
ical  and  mental  well-being.  Examples  of  such  disorders  in-
clude cardiovascular  disease,  which is  related to the shape of
the  wrist  pulse  waveform.  Thus,  by  monitoring  the  radial
artery in the wrist,  the sensor may be able to collect informa-
tion  regarding  human  pulses  and  other  vital  signs.  As  depic-
ted in Fig. 4(c), the comparable pulse frequency was approxim-
ately  75 beat/min.  Meanwhile, Fig.  4(c)  depicts  a  pulse  wave-
form  with  three  distinct  peaks:  P1 represents  the  percussion
wave, P2 the tidal wave, and P3 the diastolic wave. Fig. 4(d) de-
picts  the  signs  and  symptoms  of  various  cardiovascular  dis-
orders. Because the wrist pulse waveform can be used to pre-
dict  a  variety  of  cardiovascular  diseases,  our  sensors  may
have  a  future  in  real-time  health  monitoring.  Based  on  these
initial  findings,  it  appears  that  this  flexible  pressure  sensor
could  find  applications  in  several  scenarios  requiring  reliable
detection over a wide pressure range, such as wearable medic-
al electronics and prosthetics[30−33]. 

4.  Conclusion

In  summary,  the combination of  MXene nanosheets  with
rGO resulted in a compressible and elastic MXene-derived aero-
gel  with  excellent  mechanical  properties  and good flexibility.
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Owing  to  good  3D  interlocked  structure  of  MXene/rGO  aero-
gel,  the  sensor  exhibits  a  good  sensitivity  of  61.49  kPa–1

throughout a broad linear response range of 0–40 kPa, fast re-
sponse time (68 ms) and cycling stability. In addition, the aero-
gel-based  sensor  exhibits  a  high  degree  of  linearity  over  a
wide range of pressures and temperatures. Consequently, the
pressure sensor was able to detect eight subtle, low-, and me-
dium-level  pressures,  such  as  those  produced  by  a  human
heartbeat  or  finger  movement.  These  properties  make  aero-
gels  potential  candidates  for  use  in  pressure/strain  sensors
and wearable devices. Because of its higher performance and
ease of fabrication, the proposed sensor may prove to be a vi-
able  option  for  use  in  artificial  intelligence  and  smart  medic-
al devices in the future. 
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